

The Global Market for Advanced Anti-Viral Coatings

https://marketpublishers.com/r/GD7DF1E8D97FEN.html

Date: November 2020

Pages: 263

Price: US\$ 800.00 (Single User License)

ID: GD7DF1E8D97FEN

Abstracts

The increased demand for anti-viral coatings is driven by national efforts on COVID-19 response and the cost-benefit to the medical and healthcare industry improving considerably. Major investment by large companies and governments will create significant market opportunities. As well as a huge increase in industry demand, there has been an surge in academic application focused research.

Advanced materials that that display anti-viral action and analysed in this report include:

Adaptive biomaterials.
Antibacterial peptides (AMPs).
Antibacterials liquid metals.
Nanosilver (NanoAg).
NanoGold (NanoAu).
Nanoparticle titanium dioxide (Nano-TiO2).
Nano Copper(II) chloride (NanoCuCl2).
Nano Cerium Oxide (NanoCeO2)
NanoSilica (Nano-SiO2).
Graphene oxide.

Nano Zinc Oxide (NanoZnO).

Carbon nanotubes.
Fullerenes.
Chitosan nanoparticles.
Hydrogels.
Nanocellulose (cellulose nanofibers and cellulose nanocrystals).
Markets impacted by Anti-Viral Coatings and analysed in this report include:
Household and indoor surfaces.
Surfaces for indoor poullutants and improving air quality (Photocatalytic oxidizers, filters and HVAC coatings).
Medical and healthcare settings (medical surfaces, wound dressings, medical equipment and instruments, fabric supplies scrubs, linens, masks, implants).
Antibacterial clothing (medical textiles, sportswear, underwear, socks, bedding materials etc.).
Antibacterial and anti-viral coatings and surfaces in food processing equipment conveyor belts and preparation surfaces.
Food packaging.
Water and air filtration coatings and surfaces.
Also included in this report:

Also

Profiles of over 150 companies in anti-viral and anti-bacterial coatings.

Industry focused research in academia.

Market revenues, by sector.

Contents

1 EXECUTIVE SUMMARY

- 1.1 Advanced and smart coatings
 - 1.1.1 Advantages
 - 1.1.2 Properties
 - 1.1.3 Applications
- 1.2 Advanced anti-viral coatings and surfaces
 - 1.2.1 Mode of action
 - 1.2.2 Self-cleaning anti-bacterial and anti-viral coatings and surfaces
 - 1.2.2.1 Bionic self-cleaning coatings
 - 1.2.2.2 Photocatalytic self-cleaning coatings
 - 1.2.2.3 Anti-fouling and easy-to-clean nanocoatings
 - 1.2.3 Anti-viral coatings and surfaces
 - 1.2.4 Nanomaterials
 - 1.2.5 Cleanliness of indoor and public areas driving demand for antimicrobials
 - 1.2.6 Application in healthcare environments
 - 1.2.6.1 COVID-19 and hospital-acquired infections (HAIs)
 - 1.2.6.2 Reusable Personal Protective Equipment (PPE)
 - 1.2.6.3 Facemask coatings
 - 1.2.6.4 Wipe on coatings
 - 1.2.6.5 Long-term mitigation of surface contamination with nanocoatings
- 1.3 Global market size and opportunity to 2030
- 1.3.1 End user markets for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces.
- 1.3.2 Global forecast for Advanced Anti-bacterial and Anti-Viral Coatings to 2030
- 1.4 Market and technical challenges
- 1.5 Market drivers and trends
- 1.6 Self-cleaning coatings
 - 1.6.1 Hydrophilic coatings
 - 1.6.2 Hydrophobic coatings
 - 1.6.2.1 Properties
 - 1.6.2.2 Application in facemasks
- 1.7 Superhydrophobic coatings and surfaces
 - 1.7.1 Properties
 - 1.7.1.1 Antibacterial use
- 1.8 Oleophobic and omniphobic coatings and surfaces
 - 1.8.1 SLIPS

- 1.8.2 Covalent bonding
- 1.8.3 Step-growth graft polymerization
- 1.9 Self-healing anti-bacterial and anti-viral coatings
 - 1.9.1 Extrinsic self-healing
 - 1.9.1.1 Capsule-based
 - 1.9.1.2 Vascular self-healing
 - 1.9.2 Intrinsic self-healing
 - 1.9.3 Healing volume

2 ADVANCED MATERIALS USED IN ANTI-BACTERIAL AND ANTI-VIRAL COATINGS AND SURFACES

- 2.1 Metallic-based coatings
- 2.2 Polymer-based coatings
- 2.3 ANTIMICROBIAL PEPTIDES (AMP) COATINGS
 - 2.3.1 Properties
 - 2.3.2 Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces
- 2.4 ANTIBACTERIAL LIQUID METALS
 - 2.4.1 Properties
- 2.5 GRAPHENE
 - 2.5.1 Properties
 - 2.5.2 Graphene oxide
 - 2.5.2.1 Anti-bacterial activity
 - 2.5.2.2 Anti-viral activity
 - 2.5.3 Reduced graphene oxide (rGO)
 - 2.5.4 Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces
- 2.6 HYDROGELS
 - 2.6.1 Properties
- 2.6.2 Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces
- 2.7 SILICON DIOXIDE/NanoSilica (Nano-SiO2)
 - 2.7.1 Properties
 - 2.7.2 Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces
- 2.8 SILVER AND NANOSILVER (NanoAg)
 - 2.8.1 Properties
 - 2.8.2 Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces
 - 2.8.2.1 Silver nanocoatings
 - 2.8.2.2 Antimicrobial silver paints
 - 2.8.3 Markets and applications
 - 2.8.3.1 Textiles

- 2.8.3.2 Wound dressings
- 2.8.3.3 Consumer products
- 2.8.3.4 Air filtration
- 2.8.4 Commercial activity
- 2.9 PHOTOCATALYTIC COATINGS AND NANOPARTICLE TITANIUM DIOXIDE (Nano-TiO2)
 - 2.9.1 Development of photocatalytic coatings
 - 2.9.1.1 Market drivers and trends
 - 2.9.2 Benefits of photocatalytic self-cleaning coatings
 - 2.9.3 Applications in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces
 - 2.9.3.1 Self-Cleaning coatings-glass
 - 2.9.3.2 Self-cleaning coatings-building and construction surfaces
 - 2.9.3.3 Photocatalytic oxidation (PCO) indoor air filters
 - 2.9.3.4 Water treatment
 - 2.9.3.5 Medical facilities
 - 2.9.3.6 Antimicrobial coating indoor light activation
- 2.10 NANO ZINC OXIDE (NANOZNO)
 - 2.10.1 Properties
 - 2.10.2 Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces
- 2.11 NANOCELLULOSE (CELLULOSE NANOFIBERS AND CELLULOSE NANOCRYSTALS)
 - 2.11.1 Properties
 - 2.11.2 Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces
 - 2.11.2.1 Cellulose nanofibers
 - 2.11.2.2 Cellulose nanocrystals (CNC)
- 2.12 CARBON NANOTUBES
 - 2.12.1 Properties
 - 2.12.2 Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces
- 2.13 FULLERENES
 - 2.13.1 Properties
 - 2.13.2 Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces
- 2.14 CHITOSAN NANOPARTICLES
 - 2.14.1 Properties
 - 2.14.2 Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces
 - 2.14.2.1 Wound dressings
 - 2.14.2.2 Packaging coatings and films
 - 2.14.2.3 Food storage
- 2.15 NANO COPPER (II) CHLORIDE (NanoCuCl2)
 - 2.15.1 Properties

- 2.15.2 Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces
- 2.16 OTHER NANOPARTICLES
 - 2.16.1 NanoGold (NanoAu)
 - 2.16.2 Nano Cerium Oxide (NanoCeO2)
- 2.17 ADAPTIVE BIOMATERIALS
 - 2.17.1 Properties
 - 2.17.2 Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces

3 MARKETS FOR ADVANCED ANTI-BACTERIAL AND ANTI-VIRAL COATINGS AND SURFACES

- 3.1 HOUSEHOLD AND INDOOR SURFACES
 - 3.1.1 Market drivers and trends
 - 3.1.2 Applications
 - 3.1.2.1 Self-cleaning and easy-to-clean
 - 3.1.2.2 Indoor pollutants and air quality
 - 3.1.3 Global market size
- 3.2 MEDICAL & HEALTHCARE SETTINGS
 - 3.2.1 Market drivers and trends
 - 3.2.2 Applications
 - 3.2.2.1 Medical surfaces
 - 3.2.2.2 Wound dressings
 - 3.2.2.3 Medical equipment and instruments
 - 3.2.2.4 Fabric supplies scrubs, linens, masks (medical textiles)
 - 3.2.2.5 Medical implants
 - 3.2.3 Global market size
- 3.3 CLOTHING AND TEXTILES
 - 3.3.1 Market drivers and trends
 - 3.3.2 Applications
 - 3.3.2.1 Antimicrobial clothing
 - 3.3.3 Global market size
- 3.4 FOOD & BEVERAGE PRODUCTION AND PACKAGING
 - 3.4.1 Market drivers and trends
 - 3.4.2 Applications
- 3.4.2.1 Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces in food processing equipment, conveyor belts and preparation surfaces
 - 3.4.2.2 Antimicrobial coatings and films in food packaging
 - 3.4.3 Global market size
- 3.5 OTHER MARKETS

- 3.5.1 Automotive and transportation interiors
- 3.5.2 Water and air filtration
- 4 ADVANCED ANTI-BACTERIAL AND ANTI-VIRAL COATINGS AND SURFACES COMPANY PROFILES
- **5 RECENT RESEARCH IN ACADEMIA**
- **6 AIMS AND OBJECTIVES OF THE STUDY**
- **7 RESEARCH METHODOLOGY**
- **8 REFERENCES**

Tables

TABLES

- Table 1. Growth Modes of Bacteria and characteristics.
- Table 2. Summary for bionic self-cleaning nanocoatings.
- Table 3. Market summary for photocatalytic self-cleaning coatings.
- Table 4: Summary of anti-fouling and easy-to-clean coatings.
- Table 5. Types of nanomaterials used in Advanced Bactericidal & Viricidal Coatings and Surfaces, benefits and applications.
- Table 6: End user markets for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces.
- Table 7: Total global revenues for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces, 2019-2030, USD, by market.
- Table 8: Total global revenues for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces, 2019-2030, millions USD, conservative estimate, by coatings type.
- Table 9: Market and technical challenges for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces.
- Table 10. Market drivers and trends in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces.
- Table 11: Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces.
- Table 12. Applications of oleophobic & omniphobic coatings.
- Table 13. Types of self-healing coatings and materials.
- Table 14. Types of self-healing antimicrobial coatings.
- Table 15: Polymer-based coatings for Bactericidal & Viricidal Surfaces.
- Table 16. Types of antibacterial AMP coatings.
- Table 17. AMP contact-killing surfaces.
- Table 18: Graphene properties relevant to application in coatings.
- Table 19. Bactericidal characters of graphene-based materials.
- Table 20. Markets and applications for antimicrobial and antiviral nanocoatings graphene nanocoatings.
- Table 21. Types of antibacterial hydrogels.
- Table 22. Markets and applications for nanosilver-based Advanced Bactericidal & Viricidal Coatings and Surfaces.
- Table 23. Commercial activity in Bactericidal & Viricidal nanosilver coatings.
- Table 24. Self-cleaning (photocatalytic) nanocoatings-Nanomaterials used, principles, properties and applications.
- Table 25. Development of photocatalytic coatings, by generation.

- Table 26. Antibacterial effects of ZnO NPs in different bacterial species.
- Table 27. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics.
- Table 28. Mechanism of chitosan antimicrobial action.
- Table 29. Types of adaptive biomaterials for Bactericidal & Viricidal Coatings and Surfaces.
- Table 30: Market drivers and trends for Advanced Bactericidal & Viricidal Coatings nanocoatings in household and indoor surface market.
- Table 31: Market for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin household and indoor surfaces to 2030, by revenues and types.
- Table 32: Market drivers and trends for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin medicine and healthcare.
- Table 33: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.
- Table 34. Types of advanced antimicrobial medical device coatings.
- Table 35: Types of advanced coatings applied in medical implants.
- Table 36: Nanomaterials utilized in medical implants.
- Table 37: Market for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin medical and healthcare settings to 2030, by revenues and types.
- Table 38: Market drivers and trends for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin the textiles and apparel industry.
- Table 39: Applications in textiles, by advanced materials type and benefits thereof.
- Table 40: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.
- Table 41: Market for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin clothing and textiles to 2030, by revenues and types.
- Table 42: Market drivers and trends for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces in the packaging market.
- Table 43: Market for Advanced Bactericidal & Viricidal Coatings and Surfaces in food and beverage production & packaging to 2030, by revenues and types.
- Table 44: Advanced coatings applied in the automotive industry.
- Table 45: Applications in air and water filters, by advanced materials type and benefits thereof.
- Table 46. Advanced Bactericidal & Viricidal Coatings and Surfaces development in academia.

Figures

FIGURES

- Figure 1: Self-cleaning superhydrophobic coating schematic.
- Figure 2: Principle of superhydrophilicity.
- Figure 3: Schematic of photocatalytic air purifying pavement.
- Figure 4. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces.
- Figure 5. Face masks coated with antibacterial & antiviral nanocoating.
- Figure 6: Total global revenues for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces, 2019-2030, USD, by market.
- Figure 7: Total global revenues for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces, 2019-2030, millions USD, conservative estimate, by coatings type.
- Figure 8: (a) Water drops on a lotus leaf.
- Figure 9: A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.
- Figure 10: Contact angle on superhydrophobic coated surface.
- Figure 11: Self-cleaning nanocellulose dishware.
- Figure 12: SLIPS repellent coatings.
- Figure 13: Omniphobic coatings.
- Figure 14. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials. Red and blue colours indicate chemical species which react (purple) to heal damage.
- Figure 15: Stages of self-healing mechanism.
- Figure 16. Self-healing mechanism in vascular self-healing systems.
- Figure 17: Comparison of self-healing systems.
- Figure 18. Antibacterial mechanisms of metal and metallic oxide nanoparticles.
- Figure 19. Antimicrobial peptides.
- Figure 20: Graphair membrane coating.
- Figure 21: Antimicrobial activity of Graphene oxide (GO).
- Figure 22. Applications of antibacterial hydrogels
- Figure 23: Hydrophobic easy-to-clean coating.
- Figure 24 Anti-bacterial mechanism of silver nanoparticle coating.
- Figure 25. Titanium dioxide-coated glass (left) and ordinary glass (right).
- Figure 26. Schematic of photocatalytic indoor air purification filter.
- Figure 27. Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.
- Figure 28. Schematic showing the self-cleaning phenomena on superhydrophilic

surface.

- Figure 29: Schematic of photocatalytic air purifying pavement.
- Figure 30: Self-Cleaning mechanism utilizing photooxidation.
- Figure 31: Photocatalytic oxidation (PCO) air filter.
- Figure 32: Schematic of photocatalytic water purification.
- Figure 33. Schematic of antibacterial activity of ZnO NPs.
- Figure 34: Types of nanocellulose.
- Figure 35. Mechanism of antimicrobial activity of carbon nanotubes.
- Figure 36: Fullerene schematic.
- Figure 37. TEM images of Burkholderia seminalis treated with (a, c) buffer (control) and
- (b, d) 2.0 mg/mL chitosan; (A: additional layer; B: membrane damage).
- Figure 38. Market for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin household and indoor surfaces to 2030, by revenues and types.
- Figure 39. Nano-coated self-cleaning touchscreen.
- Figure 40: Anti-bacertial sol-gel nanoparticle silver coating.
- Figure 41. Market for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin medical and healthcare settings to 2030, by revenues and types.
- Figure 42: Omniphobic-coated fabric.
- Figure 43. Market for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin clothing and textiles to 2030, by revenues and types.
- Figure 44. Steps during food processing and where contamination might occur from various sources.
- Figure 45: Oso fresh food packaging incorporating antimicrobial silver.
- Figure 46. Market for Advanced Bactericidal & Viricidal Coatings and Surfaces in food and beverage production & packaging to 2030, by revenues and types.
- Figure 47. Lab tests on DSP coatings.
- Figure 48. GermStopSQ mechanism of action.
- Figure 49. GrapheneCA anti-bacterial and anti-viral coating.
- Figure 50. NOx reduction with TioCem.
- Figure 51. Microlyte Matrix bandage for surgical wounds.
- Figure 52. Self-cleaning nanocoating applied to face masks.
- Figure 53. NanoSeptic surfaces.
- Figure 54. NascNanoTechnology personnel shown applying MEDICOAT to airport luggage carts.
- Figure 55. V-CAT photocatalyst mechanism.
- Figure 56. Applications of Titanystar.

I would like to order

Product name: The Global Market for Advanced Anti-Viral Coatings

Product link: https://marketpublishers.com/r/GD7DF1E8D97FEN.html

Price: US\$ 800.00 (Single User License / Electronic Delivery)

If you want to order Corporate License or Hard Copy, please, contact our Customer

Service:

info@marketpublishers.com

Payment

To pay by Credit Card (Visa, MasterCard, American Express, PayPal), please, click button on product page https://marketpublishers.com/r/GD7DF1E8D97FEN.html

To pay by Wire Transfer, please, fill in your contact details in the form below:

First name:	
Last name:	
Email:	
Company:	
Address:	
City:	
Zip code:	
Country:	
Tel:	
Fax:	
Your message:	
	**All fields are required
	Custumer signature

Please, note that by ordering from marketpublishers.com you are agreeing to our Terms & Conditions at https://marketpublishers.com/docs/terms.html

To place an order via fax simply print this form, fill in the information below and fax the completed form to +44 20 7900 3970